Nexus Reservoir Simulation Software

вторник 28 январяadmin
Nexus Reservoir Simulation Software Rating: 8,8/10 9026 reviews

Landmark's Nexus® Suite reservoir simulation equips reservoir engineers with the integrated modeling capabilities needed to assess, validate, plan. Reservoir Simulators Help Us Answer Several Questions 1. How should a field be developed to maximize economic recovery? What is the best enhanced recovery scheme for the reservoir? Why is the reservoir not behaving according to predictions made by previous engineering studies? What is the ultimate economic recovery of the field?

Reservoir simulation is an area of reservoir engineering in which computer models are used to predict the flow of fluids (typically, oil, water, and gas) through porous media.

Under the model in the broad scientific sense of the word, they understand a real or mentally created structure that reproduces or reflects the object being studied. The name of the model comes from the Latin word modulus, which means “measure, pattern”. Modeling is one of the main methods of knowledge of nature and society. It is widely used in technology and is an important step in the implementation of scientific and technological progress.

The creation of models of oil fields and the implementation of calculations of field development on their basis is one of the main areas of activity of engineers and oil researchers.

On the basis of geological and physical information about the properties of an oil, gas or gas condensate field, consideration of the capabilities of the systems and technologies for its development create quantitative ideas about the development of the field as a whole. A system of interrelated quantitative ideas about the development of a field is a model of its development, which consists of a reservoir model and a model of a field development process.

The investment project is a system of quantitative ideas about its geological and physical properties, used in the calculations of field development. The field of deposits and deposits is a system of quantitative ideas about the process of extracting oil and gas from the subsoil. Generally speaking, any combination of reservoir models and development process can be used in an oil field development model, as long as this combination most accurately reflects reservoir properties and processes. At the same time, the choice of a particular reservoir model may entail taking into account any additional features of the process model and vice versa.

The reservoir model should, of course, be distinguished from its design scheme, which takes into account only the geometric shape of the reservoir. For example, a reservoir model may be a stratified heterogeneous reservoir. In the design scheme, the reservoir with the same model of it can be represented as a reservoir of a circular shape, a rectilinear reservoir, etc.

Layer models and processes for extracting oil and gas from them are always clothed in a mathematical form, i.e. characterized by certain mathematical relationships.

The main task of the engineer engaged in the calculation of the development of an oil field is to draw up a calculation model based on individual concepts derived from a geological-geophysical study of the field, as well as hydrodynamic studies of wells.

Modern computer and computational achievements make it possible to take into account the properties of the layers and the processes occurring in them when calculating the development of deposits with considerable detail.

The possibilities of geological, geophysical and hydrodynamic cognition of development objects are continuously expanding. Yet these possibilities are far from endless. Therefore, there is always a need to build and use such a field development model in which the degree of knowledge of the object and the design requirements would be adequate

Naruto Kecil Subtitle Indonesia Batch Episode 1-220 - download streaming anime Naruto Kecil Subtitle Indonesia Batch Episode 1-220 format mkv mp4 360p 480p 720p. Naruto Kecil Episode 1 Subtitle Indonesia - download streaming anime Naruto Kecil Episode 1 Subtitle Indonesia format mkv mp4 360p 480p 720p. Beritahu kami dengan cara berkomentar pada video yang tidak bisa diputar sehingga kami bisa memperbaikinya. Request bisa langsung komen disini. Fairy Gone 2nd Season Episode 11. Naruto Kecil Episode 3 Subtitle Indonesia - download streaming anime Naruto Kecil Episode 3 Subtitle Indonesia format mkv mp4 360p 480p 720p. Download vidio naruto kecil


Traditional finite difference simulators dominate both theoretical and practical work in reservoir simulation. Conventional FD simulation is underpinned by three physical concepts: conservation of mass, isothermal fluid phase behavior, and the Darcy approximation of fluid flow through porous media. Thermal simulators (most commonly used for heavy crude oil applications) add conservation of energy to this list, allowing temperatures to change within the reservoir.

Numerical techniques and approaches that are common in modern simulators:

  • Most modern FD simulation programs allow for construction of 3-D representations for use in either full-field or single-well models. 2-D approximations are also used in various conceptual models, such as cross-sections and 2-D radial grid models.
  • Theoretically, finite difference models permit discretization of the reservoir using both structured and more complex unstructured grids to accurately represent the geometry of the reservoir. Local grid refinements (a finer grid embedded inside of a coarse grid) are also a feature provided by many simulators to more accurately represent the near wellbore multi-phase flow effects. This 'refined meshing' near wellbores is extremely important when analyzing issues such as water and gas coning in reservoirs. Other types of simulators include finite element and streamline.
  • Representation of faults and their transmissibilities are advanced features provided in many simulators. In these models, inter-cell flow transmissibilities must be computed for non-adjacent layers outside of conventional neighbor-to-neighbor connections.
  • Natural fracture simulation (known as dual-porosity and dual-permeability) is an advanced feature which model hydrocarbons in tight matrix blocks. Flow occurs from the tight matrix blocks to the more permeable fracture networks that surround the blocks, and to the wells.
  • A black-oil simulator does not consider changes in composition of the hydrocarbons as the field is produced, beyond the solution or evolution of dissolved gas in oil, or vaporisation or dropout of condensate from gas.
  • A compositional reservoir simulator calculates the PVT properties of oil and gas phases once they have been fitted to an equation of state (EOS), as a mixture of components. The simulator then uses the fitted EOS equation to dynamically track the movement of both phases and components in field. This is accomplished at increased cost in setup time, compute time, and computer memory.

The simulation model computes the saturation change of three phases (oil, water and gas)and pressure of each phase in each cell at each time step. As a result of declining pressure as in a reservoir depletion study, gas will be liberated from the oil. If pressures increase as a result of water or gas injection, the gas is re-dissolved into the oil phase.

A simulation project of a developed field, usually requires 'history matching' where historical field production and pressures are compared to calculated values.It was realised at an early stage that this was essentially an optimisation process, corresponding to Maximum Likelihood. As such, it can be automated, and there are multiple commercial and software packages designed to accomplish just that. The model's parameters are adjusted until a reasonable match is achieved on a field basis and usually for all wells. Commonly, producing water cuts or water-oil ratios and gas-oil ratios are matched.

Other engineering approaches

Without FD models, recovery estimates and oil rates can also be calculated using numerous analytical techniques which include material balance equations (including Havlena–Odeh and Tarner method), fractional flow curve methods (such as the Buckley–Leverett one-dimensional displacement method, the Deitz method for inclined structures, or coning models), and sweep efficiency estimation techniques for water floods and decline curve analysis. These methods were developed and used prior to traditional or 'conventional' simulations tools as computationally inexpensive models based on simple homogeneous reservoir description. Analytical methods generally cannot capture all the details of the given reservoir or process, but are typically numerically fast and at times, sufficiently reliable. In modern reservoir engineering, they are generally used as screening or preliminary evaluation tools. Analytical methods are especially suitable for potential assets evaluation when the data are limited and the time is critical, or for broad studies as a pre-screening tool if a large number of processes and / or technologies are to be evaluated. The analytical methods are often developed and promoted in the academia or in-house, however commercial packages also exist.


Many programs are available for reservoir simulation. The most well known (in alphabetical order) are:

Open source:

  • BOAST – Black Oil Applied Simulation Tool (Boast) simulator is a free software package for reservoir simulation available from the U.S. Department of Energy.[1] Boast is an IMPES numerical simulator (finite-difference implicit pressure-explicit saturation) which finds the pressure distribution for a given time step first then calculates the saturation distribution for the same time step isothermal. The last release was in 1986 but it remains as a good simulator for educational purposes.
  • MRST – The MATLAB Reservoir Simulation Toolbox (MRST) is developed by SINTEF Applied Mathematics as a MATLAB® toolbox. The toolbox consists of two main parts: a core offering basic functionality and single and two-phase solvers, and a set of add-on modules offering more advanced models, viewers and solvers. MRST is mainly intended as a toolbox for rapid prototyping and demonstration of new simulation methods and modeling concepts on unstructured grids. Despite this, many of the tools are quite efficient and can be applied to surprisingly large and complex models.[2]
  • OPM – The Open Porous Media (OPM) initiative provides a set of open-source tools centered on the simulation of flow and transport of fluids in porous media.[3]


Dragon naturallyspeaking download version 13. You may want all of the most popular programs in a MicrosoftOffice software package, including Word®, Excel®, PowerPoint® andOneNote®.

  • Schlumberger INTERSECT[4]
  • Schlumberger ECLIPSE – Originally developed by ECL (Exploration Consultants Limited) and currently owned, developed, marketed and maintained by SIS (formerly known as GeoQuest), a division of Schlumberger. The name ECLIPSE originally was an acronym for 'ECL´s Implicit Program for Simulation Engineering'. Simulators include black oil, compositional, thermal finite-volume, and streamline simulation. Add-on options include local grid refinements, coalbed methane, gas field operations, advanced wells, reservoir coupling, and surface networks.[5]
  • ECHELON, by Stone Ridge Technology: a fully implicit simulator, the only full GPU accelerated reservoir simulator for black-oil formulations.[6]
  • ESTD Co. RETINA Simulation – RETINA Simulation is a Black-Oil and Compositional reservoir simulation software fully developed in Engineering Support and Technology Development Company (ESTD). [7]
  • CMG Suite (IMEX, GEM and STARS) – Computer Modelling Group currently offers three simulators: a black oil simulator, called IMEX, a compositional / unconventional simulator called GEM and a thermal and advanced processes simulator called STARS.[8]
  • Sensor, by Coats Engineering, is a black oil and compositional reservoir simulator developed beginning in the 1990s by Dr. Keith H. Coats, founder of the commercial reservoir simulation industry (Intercomp Resource and Development, 1968). Sensor is the last of many reservoir simulators developed by Dr. Coats.
  • XXSim is an EOS based general purpose compositional reservoir simulator with fully implicit formulation. It allows any components to appear and stay in any fluid phases (aqueous, oilec and vapour).It can be simplified to the conventional or traditional black oil, compositional and thermal modules. It also can be expanded to fully EOS based thermal simulator.[9]
  • Tempest MORE is a reservoir simulator offering black oil, compositional and thermal options.[10]
  • ExcSim, a fully implicit 3-phase 2D modified black oil reservoir simulator for the Microsoft Excel platform [11]
  • Landmark Nexus – Nexus is an oil and gas reservoir simulator originally developed as 'Falcon' by Amoco, Los Alamos National Laboratory and Cray Research. It is currently owned, developed, marketed and maintained by Landmark Graphics, a product service line of Halliburton. Nexus will gradually replace VIP, or Desktop VIP, Landmark's earlier generation of simulator.
  • Rock Flow Dynamics tNavigator supports black oil, compositional and thermal compositional simulations for workstations and High Performance Computing clusters [12]
  • Plano Research Corporation FlowSim is a fully implicit 3-phase, 3-D, black oil and compositional finite difference reservoir simulator with LGRs, dual porosity dual permeability, and parallel capabilities.[13]
  • GrailQuest's ReservoirGrail employs a patented approach called Time Dynamic Volumetric Balancing [14] to simulate reservoirs during primary and secondary recovery.[15]
  • Gemini Solutions Merlin is a fully implicit 3-Phase finite difference reservoir simulator originally developed at the Texaco research department and currently used by the Bureau of Ocean Energy Management and Bureau of Safety and Environmental Enforcement to calculate Worst Case Discharge rates and burst/collapse pressures on casing shoes and blowout preventers.[16][17]
  • Under Palm Trees' DeepSim is a fully implicit, 3-phase, compositional finite difference reservoir simulator for the Android phone and tablet platform. [18][19]
  • TTA/PetroStudies offers a full-fledged black oil simulator, Exodus, with assisted history matching module (Revelations) that can vary porosity/permeability/structure/netpay/initial pressure/saturations/contact depths to match wells' observed rates/cumulatives/pressures.[20] Revelations runs multiple cases on shared network computers. Exotherm offers thermal simulation of SAGD, CSS with discretized wellbore flow up to surface.


Reservoir simulation is ultimately used for forecasting future oil production, decision making, and reservoir management. The state of the art framework for reservoir management is closed-loop field development (CLFD) optimization which utilizes reservoir simulation (together with geostatistics, data assimilation, and selection of representative models) for optimal reservoir operations.

See also

  • Seismic to simulation


  • Aziz, K. and Settari, A., Petroleum Reservoir Simulation, 1979, Applied Science Publishers.
  • Ertekin, T, Abou-Kassem, J.H. and G.R. King, Basic Applied Reservoir Simulation, SPE Textbook Vol 10, 2001.
  • Fanchi, J., Principles of Applied Reservoir Simulation, 3rd Edition, Elsevier GPP, 2006.
  • Mattax, C.C. and Dalton, R. L, Reservoir Simulation, SPE Monograph Volume 13, 1990.
  • Holstein, E. (Editor), Petroleum Engineering Handbook, Volume V(b), Chapt 17, Reservoir Engineering, 2007.
  • Warner, H. (Editor), Petroleum Engineering Handbook, Volume VI, Chapter 6, Coalbed Methane, 2007.
  • Carlson, M., Practical Reservoir Simulation, 2006, PennWell Corporation.
  • R. E. Ewing, The Mathematics of Reservoir Simulation

Other references

External links

  • * Software for reservoir simulation

Notes and References

  1. Web site: Department of Energy. 3 March 2014.
  2. Web site: MRST Homepage. 3 March 2014.
  3. Web site: Open Porous Media Initiative . 3 March 2014.
  4. Web site: INTERSECT Homepage.
  5. Web site: ECLIPSE Homepage.
  6. Web site: RETINA Homepage.
  7. Web site: CMG Homepage. 28 October 2016.
  8. Web site: XXSim Homepage.
  9. Web site: CMG Homepage. 3 March 2014.
  10. Web site: ExcSim. 24 April 2015.
  11. Web site: RFD Homepage. 7 March 2014.
  12. Web site: FlowSim.
  13. Web site: ReservoirGrail Software Page. 13 January 2016.
  14. Web site: ReservoirGrail Homepage. 13 January 2016.
  15. Web site: Appendix E – Reservoir Modeling Team 2010; Reservoir Modeling Report. 19 April 2016.
  16. Web site: BSEE Procurement Business Opportunities. 19 April 2016.
  17. Web site: DeepSim - Android Apps on Google Play. en-US. 2017-08-13.
  18. Web site: DeepSim – Powerful reservoir simulation with an intuitive interface. en-US. 2017-08-13.
  19. Web site: PetroStudies Consultants Inc. – Index page. 2017-09-27.

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article 'Reservoir simulation'.

Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2020, A B Cryer, All Rights Reserved. Cookie policy.

Sensor® is a generalized 3D numerical model used by engineers to optimize oil and gas recovery processes through simulation of compositional and black oil fluid flow in single porosity, dual porosity, and dual permeability petroleum reservoirs. Sensor reservoir modeling software provides unparalleled results in terms of speed, accuracy, stability, reliability, and ease of use. It runs in a fraction of the cpu time required by other reservoir simulators, for both black oil and compositional fluid pvt descriptions, enabling unprecedented levels of detail and accuracy in your studies, and allowing you to make much better and faster decisions. The Sensor reservoir simulator has been used in numerous field studies by consultants and by independent, national, and major integrated oil companies. Sensor is compiled for use on hardware running Windows 32- and 64-bit operating systems. Integrated interfaces and tools for static modeling, data preparation, job submission, pre/post processing and visualization, assisted history matching and optimization, and complete seismic-to-simulation workflows are offered by third parties.